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1. Introduction

The study of linked or segmented structures is important in the modelling of many practical
multi-body systems such as robots and space structures (see e.g. Refs. [1–3]). The joints between
links are often stiffened by rotational springs to maintain the final shape. Previous works in this
area are few. Wang [4] studied the deformations of an axially rotated linked rod. Wang and Du [5]
considered the non-linear statics of a linked rod loaded at one end. Wittenburg [6] formulated the
vibrations of a linked cantilever, but no details are given. The present paper investigates in depth
the basic problem of the free vibrations of a linked rod.

2. Formulation

Consider a rod of length L composed of N rigid links joined together (Fig. 1(a)). The links are
uniform and of length l ¼ L=N. There are rotational springs at the joints to maintain the
straightness of the rod. Fig. 1(b) shows the forces on the nth link. Let ðx0

n�1; y
0
n�1Þ and ðx0

n; y
0
nÞ be

the co-ordinates of the left and right ends of the link, respectively. A dynamic force balance gives

F 0
n � F 0

n�1 ¼ mð .x0
n þ .x0

n�1Þ=2; ð1Þ

G0
n � G0

n�1 ¼ mð .y0n þ .y0
n�1Þ=2; ð2Þ

where F and G are horizontal and vertical forces, m is the mass of the link, and the two dots
represent second derivatives in time. A dynamic moment balance about the mid-point gives

Mn � Mn�1 þ ðG0
n þ G0

n�1Þl cos yn=2 � ðF 0
n þ F 0

n�1Þl sin yn=2 ¼ I .yn; ð3Þ

where M is the moment at the ends, y is the angle of inclination, and I is the rotational moment of
inertia. For uniform bars, I ¼ ml2=12: The rotational springs are assumed to be linear, such that
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the end moment is proportional to the angle difference between two links,

Mn ¼ kðynþ1 � ynÞ; ð4Þ

where k is the spring constant. Geometry also dictates

x0
n � x0

n�1 ¼ l cos yn; y0
n � y0n�1 ¼ l sin yn: ð5Þ

Normalize all lengths by L; forces by k=L; time by L
ffiffiffiffiffiffiffiffiffi
m=k

p
and drop primes. Eqs. (1)–(5)

become

Fn � Fn�1 ¼ ð .xn þ .xn�1Þ=2; Gn � Gn�1 ¼ ð .yn þ .yn�1Þ=2; ð6; 7Þ

ynþ1 � 2yn þ yn�1 þ ðGn þ Gn�1Þcos yn=ð2NÞ � ðFn þ Fn�1Þsin yn=ð2NÞ ¼ #I.yn; ð8Þ

xn � xn�1 ¼ cos yn=N; yn � yn�1 ¼ sin yn=N; ð9; 10Þ

where

#I ¼
I

L2m
¼

1

12N2
: ð11Þ

The boundary conditions are that the rod has zero force and zero moment at the ends

F0 ¼ G0 ¼ FN ¼ GN ¼ 0; ð12Þ

M0 ¼ MN ¼ 0: ð13Þ

3. Vibration frequencies

Of interest are the natural frequencies of such a linked rod. Perturb from the horizontal state
where xn ¼ n=N and all other variables are zero.

xn ¼ n=N þ xneiot; yn ¼ Zneiot; ð14Þ

Fn ¼ fneiot; Gn ¼ gneiot; ð15Þ

yn ¼ fneiot; ð16Þ
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Fig 1. (a) The vibrating linked rod and (b) the nth link.
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where x; Z; f ; g; f are small and o is the vibration frequency normalized by the inverse time scale.
The governing equations linearize to

fn � fn�1 ¼ �o2ðxn þ xn�1Þ=2; gn � gn�1 ¼ �o2ðZn þ Zn�1Þ=2; ð17; 18Þ

fnþ1 � 2fn þ fn�1 þ ðgn þ gn�1Þ=ð2NÞ ¼ �o2 #Ifn; ð19Þ

xn � xn�1 ¼ 0; Zn � Zn�1 ¼ fn=N: ð20; 21Þ

The boundary conditions are

f0 ¼ fN ¼ 0; g0 ¼ gN ¼ 0; f0 ¼ f1; fN ¼ fNþ1: ð22–25Þ

Here fictitious links n ¼ 0 and N þ 1 are added to facilitate the boundary conditions. It is evident
that

fn ¼ 0; xn ¼ 0: ð26Þ

The vibration problem is then obtained from Eqs. (18), (19), (21) and (23)–(25). There are
3N þ 4 equations and an equal number of unknowns. For non-trivial solutions, the eigenvalues or
frequencies o are found from the determinant of coefficients. Given the number of links N; there
are N � 1 distinct non-trivial eigenvalues and modes.

The one link rigid rod does not vibrate. For N ¼ 2; the frequency is found to be 4
ffiffiffi
6

p
: For

N ¼ 3; the frequencies are 3
ffiffiffi
6

p
and 27

ffiffiffiffiffiffiffiffi
2=5

p
: For N ¼ 4 the frequencies areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

312 � 24
ffiffiffiffiffiffiffiffi
137

pq
; 16

ffiffiffiffiffiffiffiffi
6=7

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
312 þ 24

ffiffiffiffiffiffiffiffi
137

pq
: A computer is used to find the numerical

values of the frequencies for N > 4: Table 1 shows the first four frequencies.
As N approach infinity, the results for the linked rod should tend to those of a continuous

elastic beam. Vibrations of a continuous beam have been considered previously (e.g. Ref. [6]).
Without going through the details, the linearized beam equation is

d4y

dx4
� l4y ¼ 0; ð27Þ

where

l4 ¼
ro02L4

EI
: ð28Þ

Here r is the mass per length, o0 is the frequency and EI is the flexural rigidity. The boundary
conditions are zero moment and zero force at the ends

d2y

dx2
¼

d3y

dx3
¼ 0 at x ¼ 0; 1: ð29Þ
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Table 1

The first four natural frequencies o

N ¼ 2 3 4 5 6 8 10 15 20

9.798 7.348 5.576 4.470 3.727 2.796 2.237 1.492 1.119

— 17.076 14.81 12.19 10.23 7.701 6.165 4.111 3.084

— — 24.34 22.62 19.67 15.00 12.07 8.058 6.045

— — — 31.56 30.42 24.53 19.87 13.31 9.991
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The solution of y is in terms of cosðlxÞ; sinðlxÞ; coshðlxÞ; sinhðlxÞ: For non-trivial solutions
the boundary conditions yield the characteristic equation

1 � cosh l cos l ¼ 0: ð30Þ

The eigenvalues are at 4.730, 7.853, 10.996, 14.137 etc. The jth eigenvalue is well approximated
by ðj þ 0:5Þp when j > 4: The connection between discrete links and the continuous rod was
delineated by Wang [3], that for large N

EIE
kL

N
: ð31Þ

Using this relation, we find

l2ENLo0
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ oN: ð32Þ

Table 2 shows a comparison of oN with l2:
It is seen that the discrete case does converge to the continuous case when the number of links

become large. In fact for N ¼ 20; the first 12 values of oN are within 3% of l2 computed from
Eq. (30).

4. Vibration modes

The vibration modes can be found after the natural frequencies are obtained. Since the amplitude
for small vibrations is arbitrary, given any f0 Eqs. (18), (19), (21), (23) and (24) are solved for the
displacement Z: For example, the five frequencies for the six-link rod are 3.727, 10.233, 19.669, 30.421,
and 38.730. The corresponding modes are shown in Fig. 2. In general, the jth frequency has j þ 1 sign
changes in displacement. The mode shapes are even with respect to the mid-point if j is odd, and the
mode shapes are odd if j is even. The largest displacement always occurs at the ends. Notice that if N
is even and the mode shape is odd, half of the rod represents a vibrating linked cantilever.

5. Discussion

The basic free–free vibration of a linked rod is studied for the first time. Eqs. (6)–(13) are the
exact differential-difference dynamical equations, which, given the initial conditions, can be
numerically integrated with some effort. In this paper the small, natural vibrations are studied and
thus the linearized difference equations suffice.
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Table 2

First four values of oN compared to l2 of the continuous case

N ¼ 6 N ¼ 8 N ¼ 10 N ¼ 15 N ¼ 20 l2

22.362 22.371 22.372 22.373 22.373 22.373

61.398 61.607 61.650 61.669 61.672 61.673

118.01 120.01 120.70 120.87 120.90 120.90

182.53 196.22 198.73 199.70 199.82 199.86
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The vibration frequencies are found to be heavily dependent on the number of links. For small
number of links, the frequencies are higher and fewer in number. For large number of links, the
frequencies approach those of a continuous elastic rod through Eq. (32).

The rotational spring may be non-linear. For example Eq. (4) may include a term which is a
cube of the angle difference. This non-linearity may influence the large deformations of the rod,
but does not affect the natural frequencies and vibrational modes studied in this paper.
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Fig. 2. The vibrational modes for N ¼ 6: Eigen frequencies increase from top.
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